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I. ABSTRACT

THE project that we want to optimize
is the Super Sampling Anti Aliasing
(SSAA[1]) algorithm which is in the graphics
domain. This is normally used for removing
aliasing in real time renders, such as game,
animation, or SVG displayers. Aliasing is a
very common problem in real time rendering
since unlike the real world, lines on a
computer screen are shown by a collection
of equally sized small squares. The jagged
effect created by these small squares is what
we call aliasing. To remove aliasing, the
traditional methods like Fourier Transforms
are computationally demanding and require
a lot of repeated work. The Super Sampling
Anti Aliasing algorithm offers a cheaper and
better solution; however, SSAA is more
expensive memory-wise than other
anti-aliasing algorithms and can
significantly increase rendering times. This
is a crucial problem for real time renderers
since in real time renderers, we always want
to render each frame within 16ms so that we
can maintain at least 60 fps frame rate. A
slower anti-aliasing algorithm will cause
disasters to a real time render which causes
the animation or game to break up entirely.
By optimizing the SSAA algorithm, we
could reduce both the run time and space
used for this algorithm so that we would

produce a better frame rate in real time
rendering.

The SSAA algorithm mainly takes
the idea that given a high resolution version
of the original image, we can blend all
pixels nearby to create smooth curves or
lines. The idea is simple; however, it can be
very expensive in a real time renderer from
both the perspective of time and space.
Since the SSAA algorithm requires the
program to create a high resolution version
of the original image then store it in memory
for future sampling, the space that the high
resolution image used would be multiple
times larger than the original image. In
addition to the memory problem, it is also
very challenging from a computational
perspective, since for each point in the
original image, we want to sample the high
resolution image multiple times to compute
the interpolation. There are many places in
the original algorithm we can optimize. For
memory problems, we should be able to find
a better way to encode the higher resolution
image instead of storing them completely in
buffers. For computational problems, we
could also change the way the renderer
samples from the high resolution image.

The codebase that we will be
working on is Project 1 of Computer
Graphics(15-662). This is a real time
renderer that can take a SVG file and display
it on the screen. Although there are many



parts in the SVG Renderer, the algorithm we
will be focusing on is still the Super
Sampling Anti Aliasing, with a subset of the
rasterization method to make the SVG
Renderer display. The baseline code we will
use as comparison is the existing solution
code for Project 1. We extracted the line
drawing and circle drawing functions and
timed them for our benchmarks.

The baseline code is mainly focusing
on the SVG rendering. However, encoding
and decoding SVG is not our main focus of
the project. Instead, we decided to extract
the data from the SVG file and hard code
them as our input to the improved version of
the circle and line drawing algorithms. The
data from the original SVG dataset that
comes with the baseline project would be
enough for our testing purpose. Moreover,
we have written code in the driver that is
able to randomly generate data in the same
format that a SVG file would provide to us.
This kind of testing data fits our purpose
since we would expect our line and circle
drawing algorithm to draw objects visually
similar to baseline code with random line
and circle input.

II. PERFORMANCE PEAK

The platform that we want to work
on is the ECE machine 010 which is a Dell
PowerEdge R430 with 2 Intel Xeon CPU
E5-2640 v4 @ 2.40GHz which is part of the
Intel® Xeon® Processor E5 Family and
uses X86 architecture. It has L1 data cache
of 8 way 10 x 32 KB, L2 cache of 8 way 10
x 256 KB, and L3 cache of 20 way 25 MB.
The microarchitecture for E5-2640 is
Broadwell and it supports AVX. It supports
all the SIMD instructions we want.

The latency and throughput for each
instruction we use is shown in Table 1.

Instruction Latency IPC

(SIMD_LOAD) vmovapd 7 2

(SIMD_STORE) vmovapd 9 1

(SIMD_ADD) vaddpd 3 1

(SIMD_MUL) vmulpd 3 2

(SIMD_FMA) vfmaddxxxpd 5 2

(SIMD_FLOOR) vroundpd 6 .5

(SIMD_CMP) vcmppd 3 1

(SIMD_AND) vandpd 1 1

(SIMD_BROADCAST)
vbroadcastsd

8 2

Table 1. Latency and Throughput[2]

The theoretical peak of the line
kernel was computed with bottleneck at
floor IPC * SIMD length * number of flops
computed = 0.5 * 4 * 1 = 2 flops / cycle.
The theoretical peak of circle is bottlenecked
at compare so 1 * 4 * 1 = 4 flops / cycle.

III. PERFORMANCE BASELINE

WE used image size as the major
target to differentiate. By increasing the size
of the image from 1x1 to 256x256, we can
see that the cycle the algorithm takes
increased dramatically. The result have
shown in Figure 1 and Figure 2 below. At
larger sizes the baseline code either takes an
hour to compute or directly segfaults.



Figure 1. Line Kernel Baseline

Figure 2. Circle Kernel Baseline

For the line kernel, based on our
analysis, pipeline 1 would be the bottleneck.
So the peak would be 4 FLOPS/cycle. Thus,
the number of operation we use for the line
algorithm is:

width * height *256

which is the FLOPS we need to use for each.
For 256 x 256 example:

256 x 256, 256 * 256 * 4 = 16777216
FLOPS

16777216/1111831935.449 = 0.015089
FLOPS/cycle.

0.000235/2 = 0.000117 = .377%

of theoretical peak.

For the circle drawing algorithm,
CMP operation would become the

bottleneck since we CMP operation has IPC
of 1 which is slower than FMA which has
IPC of 2. Thus, the circle kernel is bounded
by the pipeline 1. The number of operations
we have for the circle algorithm is:

width * height * sample rate2 * 1.

For 256 x 256 example, we have:

256 * 256 * 16 * 16 = 16777216 FLOPS.
16777216/1277023888    = 0.01313

FLOPS/cycle.
0.01313/4 = 0.00328443 = 0.328%

of theoretical peak.

IV. DESIGN

THE algorithm that we want to run is
the Super Sampling Anti Aliasing algorithm.
We want to run the portions for the lines and
for circles. Our kernels will be circle kernel
and line kernel. The parameters for deciding
the size of the kernels is the number of
independent operations needed to place
between floors. The upper bound is the
number of registers that we have available
which is 16. We chose to use a 5 16 x16
pixel large kernel to perform Xiaolin Wu’s
line algorithm[3] for the line kernel. The
circle kernel uses 16 registers when
performing SSAA on a 16 x 16
supersampled target for an actual pixel.

For the line kernel, since we
identified the bottleneck to be pipeline 1, we
tried to make sure it was as full as possible.
We use SIMD LOAD and SIMD
BROADCAST to set the initial values.
SIMD CMP and SIMD AND to compare the
values against the boundaries to make sure
not beyond limit and to set them, and SIMD
FMADD, SIMD FLOOR, SIMD ADD,
SIMD SUB to calculate the y coordinates
relative to each x value as well as the color



for the pixel. Since there are not enough
registers to have enough independent
instructions, we have to use SIMD LOAD
and SIMD STORE to store intermediate
values for future use. See Figure 3 below for
the independent and dependent chains for
the calculations to get the pixel colors. I
tried working with 4 pixels at a time, but
encountered bubbles in the pipeline as well
as more importantly I could only get a
steady state on the pipeline 1 for a few
instructions only. The prologue is fairly
expensive as it has bubbles when waiting for
simd_floor, but once in steady state can use
the adds and subs to fill in the rest of the
pipeline. Using 5 pixels makes it possible to
fill up the registers fully, but will still run
out registers and have bubbles, but smaller
than the 4 pixel one. We also tried a 8 pixel
implementation with spilling to see if it
would work faster as it removed the bubbles
seeing if that hid the implicit loads and
stores which was worse. It is probably
because in this model, it was not possible to
keep 2 sets of information without evicting
data from registers. Therefore, we ended up
using the implementation with 5 pixels
which had to perform extra loads and stores

Figure 3. Line Instruction Chain

for the calculation of 6 and 7 in Line
Instruction Use. The register use is in Line
Register Use.

Figure 4. Line Register Use

The final reduction uses SIMD
ADD, SIMD MULT, and sequential
additions for the pixel color average. We
moved the multiplication of color to the
scaling factor from the original
implementation to here as it would have
been redundant calculations as we would
have to do it 64 times per pixel instead of
once per pixel. SIMD MUL and SIMD FMA
will use functional units 0 or 1. SIMD ADD,
SIMD SUB, SIMD, SIMD CMP, and SIMD
FLOOR will use functional unit 1. SIMD
BROADCAST and LOAD will use
functional units 2 or 3. SIMD STORE will
use one of the functional units 2 or 3 or 7
and functional unit 4.

As for the circle, we came up with
two versions of design. The first design uses
SIMD MUL to calculate and𝑦

𝑗
2 = 𝑦

𝑗
× 𝑦

𝑗

SIMD ADD to calculate .𝑅
𝑖𝑗

2 = 𝑦
𝑗
2 + 𝑥

𝑖
2

Then it uses SIMD CMP to test
( would have𝑚𝑎𝑠𝑘

𝑖𝑗
= 𝑅

𝑖𝑗
2 < 𝑅

0
2 𝑚𝑎𝑠𝑘

𝑖𝑗

either all 1s if or all 0s𝑅
𝑖𝑗

2 < 𝑅
0

2



otherwise, which serves as a bitwise mask)
and SIMD AND to get

. Finally, it𝑐𝑜𝑙𝑜𝑟
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Since SIMD CMP is a latency 3 and
throughput 1 instruction, we initially
identified it as our bottleneck. However, as
the experiment went on, we realized that our
bottleneck is actually not on a single
instruction, but on functional unit 1 (p1). For
this design, we have to perform 2 SIMD
ADDs and a SIMD CMP on p1 in order to
calculate the final result, which means we
will reach our theoretical peak as long as we
manage to fill the pipeline of p1.

For each actual pixel, a total of 256
supersampled pixels will be calculated. Each
supersampled pixel will have to perform 3
float operations on functional unit 1 (p1). So
our total number of float operations
performed on our bottleneck is:

𝐹𝐿𝑂𝑃𝑆 = 256 × 3
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠)

In order to hide the latency of SIMD
CMP and SIMD ADD, it needs at least 3
independent chains. Also, to hide the latency
of SIMD AND (whose latency 1 and
throughput 1), we need one more
independent chain to fill the gap between
SIMD CMP and SIMD ADD. So, the
implementation has 4 independent chains,
which could fill both the pipeline of p1 and
all the registers.

Figure 5. Circle Instruction Chain (V1)

Figure 6. Circle Schedule (V1)



Figure 7. Circle Register Use (V1)

Figure 8. Circle Register Use (V2)

The second design uses SIMD FMA
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This design is different from the first
version. It uses SIMD FMA to calculate 𝑅

𝑖𝑗
2

. Also, for this design, we only have to
perform a SIMD ADD and a SIMD CMP on
p1 in order to calculate the final result,
which means we will reach our theoretical
peak as long as we manage to fill the
pipeline of p1. Similarly, we will have to
perform 2 float operations on p1. So, the
total number of float operations performed
on our bottleneck is:

𝐹𝐿𝑂𝑃𝑆 = 256 × 2
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠)

Figure 9. Circle Schedule (V2)



Figure 10. Circle Register Use (V2)

In this design, we need to hide the
latency of SIMD FMA. The latency of
SIMD FMA is 5 and its throughput is 2.
Since it can be performed on functional
units 0 or 1 (p0 and p1) and our p1 is busy
enough, we can assume it only uses p0 and
its actual throughput becomes 1. So we need
only 5 independent chains to hide the
latency of it.

V. PARALLELISM

The parallelization is applied to both
the draw line and the draw circle algorithms
to improve the performance of preparation
code that prepares data needed for both
kernels. The parallelization is mainly
implemented by the OpenMP library.

On line algorithm, we identified that
each write from the line kernel to the render
target is independent. Thus, in the first
version, we tried to add parallelization for
each pixel that was written in the rendering
target. However, since the number of
iterations inside the draw line only iterates
the pixels around the line, it is not big
enough to beat the overhead of using the

parallelization. We need to add more work
for each thread so that we won’t bound our
performance by the overhead of
parallelization. Therefore, we finally
decided to parallelize the draw object loop
so that each object would be drawn by a
single thread. This will give us sufficient
work for each thread to work on in parallel
and improve our performance.

On our circle algorithm, we
identified that read, SSAA, and write for
each of the pixels are independent. We are
able to apply the parallelization on each
pixel of the region where we draw the circle.
Unlike the line kernel, we need to iterate
through all pixels of the region that contains
the circle. There is sufficient work for us to
use the parallelization on the loop that
iterates through each pixel and executes the
circle kernel in parallel. Thus, we rewrote
the loop and applied another parallelization
to have threads work on each pixel of the
rendering target. In addition, we also
parallelized the object loop so that it would
bring us another level of improvement.

Overall, the performance is
improved about 60%+ compared to the
algorithm with a single thread for line
algorithm. The performance is improved
about 70%+ compared to the algorithm with
a single thread for the draw circle algorithm.

VI. RESULTS

For the line kernel, the baseline
segfaults when run at larger sizes, so could
only compare to smaller sizes of baseline.
The line kernel gets around 55% of peak.
The plots would not be possible to see
anything on the same plot if we did not do a
log scale on y axis as for example, at
256x256, the baseline is 427 times slower
than the line kernel. When scaling the
dimension of the problem, the baseline is
17139 times slower at 1024 x 1024.

We think there are a couple of
reasons why we do not have a very high



performance. With 5 pixels, it occupies as
pictured in Line Register Use, almost all of
the registers are used in the 5 pixel
implementation. There are bubbles
especially during the prologue. For example,
every other instruction is dependent on
loading the first index. Since the register use
is very tight, the broadcasts, loads, and
stores have the very tail end get bubbles. We
schedule these as soon as the register is free,
but there are not enough registers to place
more independent instructions, nor enough
registers to be able to store data elsewhere.

Figure 11. Line - Dimension vs Cycle

Figure 12. Line - Size vs Peak

Figure 13. Line - Size vs Cycle

For the circle kernels, we conducted
several tests, trying to find its ideal and
actual performance.

First, we tested their performance by
drawing a single pixel. This experiment
aims at finding its capability of reaching its
theoretical peak in an ideal situation (i.e. no
memory load overhead, etc.). In this
experiment, Design 1 managed to obtain
86.07% of the theoretical peak performance
while Design 2 managed to obtain 75.75%
of the theoretical peak.

Peak Cycle FLOPS Percentage

4.0 223.07 3.4429 86.07%

Table 2. Circle Kernel (V1) Performance

Peak Cycle FLOPS Percentage

4.0 168.98 3.0298 75.75%

Table 3. Circle Kernel (V2) Performance

For Design 2, we did not have
enough registers, so we only managed to
have 4 independent chains. Considering the
fact that we do redundant calculations (

) and we have bubbles in our pipeline,𝑦
𝑗

* 𝑦
𝑗

this result is reasonable. From the Fast Code
perspective, this design might be inefficient.



However, it actually outputs the same
correct result with less cycle. That is
because we identified the bottleneck and
bypassed it with other instructions.
Meanwhile, we utilized more functional
units to calculate our result.

Then, we tested their performance by
drawing practical pictures. This experiment
aims at evaluating their performance in
actual drawing tasks. We applied our kernel
to different sizes of circles, measured their
time and calculated their performance. It
turns out that the performance is relatively
stable through all sizes of pictures.

Figure 14. Circle Kernel Changing
Dimension

Figure 15. Circle Kernel Throughput
Compared to Peak

Based on our testing data, for
the line algorithm, using 4 threads would
provide the best performance. As the size of

the image increases, the performance of the
multithreading version would be even better
compared to the single thread version. For
2048x2048 images, we are able to achieve
66.37% of improvement compared to the
single thread version.

Figure 16. Line Parallel Performance

For the draw circle algorithm, using
4 or 8 threads provides the best
performance. Same as the line algorithm, as
the size of the image increases, the
performance of the multithreading version
would be even better compared to the single
thread version. For 2048x2048 images, we
are able to achieve 74.77% of improvement
compared to the single thread version.

Figure 17. Circle Parallel Performance

VII. FUTURE WORK

IF we had more time, we could
implement the steep version of the line. We
think we can flip the x and y to get the
algorithm to work that way. This would
allow the lines that are able to be drawn to



not be as limited as it currently is.
Something else that would be nice to do in
future works is to improve the packing code
that is used when preprocessing data for the
line kernel. It is currently a sequential
implementation that does not consider
independent chains, nor use SIMD. I could
also investigate machines with 32 registers
and see if it would be possible to have
enough independent instructions in there.

For the circle kernel, an obvious
improvement is to fill pipeline 1 with an
extra chain, hence we could eliminate the
bubbles in pipeline 1 and make it more
efficient. Although we have tried to use
some techniques to solve this problem(i.e.
Register renaming), we end up having a
performance drop. If we have more time to
try it, we might overcome this problem.

One thing we didn’t get time to try is
to do the parallelization for the algorithm
that finds and sorts the intersection point of
line and each pixel in it’s supersample tile.
By adding parallelization on this portion of
the code, we should be able to further
improve the line drawing algorithm for large
size images. The idea here would be to split
the intersection vector into different pieces
and sort them separately in their own
container. Then, we do a parallel merge back

to get the correct output. We are able to do
this since intersection points are also being
calculated independently and only the final
order matters. However, in the end, we
decided to not implement this parallelization
since it is relatively complex and it won’t
bring much improvement if the image size is
small as there isn’t sufficient work to
surpass the overhead of parallelization.

In addition, our implementation still
sometimes produces incorrect results against
randomly generated data. That happens
since we didn’t control the random data to
avoid the steepness of the line. The random
dataset might produce some data that is not
supported by our implementation. If we had
more time, we would definitely test with
more data and produce a more reasonable
dataset.
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